Meteorstrom

Perseiden

Alexander Pikhard

logo

Daten und Fakten zu den Perseiden (PER)

Sichtbarkeitsperiode beginnt um den17. Juli
Maximum um den13. August
Beobachtungszeitraum22:00 bis 04:00 Uhr MESZ
Sichtbarkeitsperiode endet um den24. August
maximale stündliche Zenitalrate (ZHR)100
Populationsindex (r)2.2
mittlere Eintrittsgeschwindigkeit59 km/s
Erzeugendes ObjektKomet 109P/Swift-Tuttle
Radiant zur Zeit des Maximumsα 48°, δ 58°

Mitte August ist der Sternenhimmel um eine besondere Attraktion reicher: Die Perseiden. Dieser Meteorstrom ist einer der stärksten des Jahres und zieht aufgrund der Jahreszeit immer wieder die Aufmerksamkeit auf sich. Dabei sind Meteore, im Volksmund auch Sternschnuppen genannt, durchaus häufig. Doch wenn ein Meteorstrom auftritt, steigt die Häufigkeit deutlich an.

Mitte August kreuzt die Erde die Bahn des Kometen 109P/Swift-Tuttle. Der Staub dieses Kometen erzeugt den Meteorschauer der Perseiden, die so heissen, weil sie scheinbar aus dem Sternbild des Perseus auf uns zu rasen.


Lage der Erdbahn und der Bahn des Kometen 109P Swift-Tuttle. Eingezeichnet sind die Raumrichtungen zu einigen wichtigen Sternbildern.

Der Radiant der Perseiden wandert im Sommer durch die Sternbilder Perseus und Kassiopeia.


Die Wanderung des Radianten der Perseiden. © IMO www.imo.net

Charakteristisch für die Perseiden ist, dass sie recht schnell unterwegs sind und auch durchaus sehr hell werden können, etwa wie Wega, der hellste Stern am Sommerhimmel.

Aktuelle Informationen für 2024

2024 wird das Maximum am 12. August zwischen 15 und 18 Uhr MESZ eintreten. Es fällt somit für uns unter die Tagstunden und ist nicht beobachtbar. Da das Maximum aber relativ breit ist, sind in der Nacht vom 12. auf den 13. August verstärkt Meteore zu erwarten. Der Mond steht im Ersten Viertel (zunehmender Halbmond), stört die Beobachtung also noch nicht sehr. In der Nacht vom 12. auf den 13. August geht der Mond bereits um 22.52 Uhr MESZ in Wien unter.

Wie kommt es zu einem Meteorstrom?

Das Weltall ist nicht "sauber", sondern reich an Staub, ganz besonders in einem Planetensystem. Eine der Quellen für den Staub sind Kometen, die aus Staub und Eis bestehen und bei jeder Annäherung an die Sonne einen Teil ihrer Materie verlieren. Dabei gelangen Staubteilchen in das Sonnensystem, die entlang der Bahn des Kometen die Sonne wie winzigste Planeten umkreisen.

Kreuzt die Erde die Bahn eines solchen Staubteilchen, dann dringt es mit hoher Geschwindigkeit in die Erdatmosphäre ein, wo es in ca. 100 km Höhe praktisch schlagartig verdampft. Hinter dem verdampften Teilchen bildet sich ein Kanal ionisierter Atmosphäre, der durch Rekombination leuchtet. Wir sprechen von einem Meteor oder einer Sternschnuppe.

Mehrmals im Jahr kreuzt die Erde die Bahn eines Kometen um die Sonne. Diese Bahnen enthalten besonders viel Staub, da Kometen bei jeder Annäherung an die Sonne viel Gas und Staub verlieren. Es kommt zu einem Meteorschauer oder Sternschnuppenschauer.

Dabei entsteht dabei der Eindruck, dass die Meteore alle aus einem bestimmten Sternbild kommen, das dem Strom auch seinen Namen gibt. Natürlich liegt das Sternbild viel, viel weiter von uns entfernt als der Staub in der Kometenbahn. Erst die Perspektive erzeugt den Eindruck der aus einem bestimmten Sternbild strömenden, "fallenden Sterne".


Wie es zum "Radianten" kommt

Der Radiant eines Meteorstroms ist genau genommen ein Wandelgestirn, das langsam im Lauf eines Jahres vor dem Hintergrund der Sterne wandert. Namensgebend für den Meteorstrom ist jenes Sternbild, aus dem die Meteore zur Zeit des Maximums zu kommen scheinen.

Wieviele Meteore sind jetzt wirklich zu erwarten?

In den Medien wird leider immer die stündliche Zenitalrate (Zenithal Hourly Rate, ZHR) als die tatsächlich zu erwartende Anzahl an Meteoren (Sternschnuppen) pro Stunde angegeben. Das ist aber ein gravierender Fehler, denn wie viele Meteore wirklich zu sehen sind, hängt von drei Faktoren ab:

  • Der Höhe des Radianten des Meteorstroms über dem Horizont (H). Die ZHR heisst ja deshalb so, weil sie die Anzahl der Meteore unter der Annahme, dass sich der Radiant im Zenit befindet, angibt. Das ist aber so gut wie niemals der Fall und beeinflusst die Beobachtung erheblich. Steht der Radiant unter dem Horizont, sind praktisch keine Meteore dieses Stroms zu erwarten.

  • Der visuellen Grenzhelligkeit, also der scheinbaren visuellen Helligkeit der schwächsten mit freiem Auge sichtbaren Sterne (mgr). Die ZHR geht hier von einem Wert von 6,5 aus. Dieser wird nur in mondlosen Nächten ohne jegliches Streulicht erreicht, also im Hochgebirge oder in Wüsten abseits menschlicher Siedlungen mit nächtlicher Beleuchtung.

  • Dem Populationsindex (r) des Meteorstroms. Dieser Wert beschreibt die Helligkeitsverteilung der Meteore eines Stroms. Der Wert besagt genau, wieviel Meteore mehr zu sehen sind, wenn die Grenzhelligkeit um eine Größenklasse besser wird.


Formel zur Bestimmung der ZHR aus der stündlichen Anzahl an Meteoren N
bzw. zur Bestimmung stündlichen Anzahl an Meteoren N aus der ZHR.
r ist der Populationsindex des Stroms und H die Höhe des Radianten
über dem Horizont in Grad.

Die ZHR ist variabel und es wird der Wert zum Maximum angegeben. Manche Meteorströme haben ein kurzes, spitzes Maximum und die ZHR liegt nur wenige Stunden vor und nach dem Maximum schon erheblich niedriger. Das ist natürlich auch zu berücksichtigen. Andere Ströme haben ein breites Maximum und die angegebene ZHR gilt praktisch für eine ganze Nacht.

Der Populationsindex eines Meteorstroms ist konstant und wurde über viele Jahre hinweg aus Beobachtungen ermittelt. Die Höhe des Radianten über dem Horizont hängt vom Beobachtungsort, dem Datum und der Uhrzeit ab und lässt sich ganz exakt berechnen. Die Lage des Radianten am Himmel wurde ebenfalls durch Beobachtungen über viele Jahre hinweg ermittelt.

Die visuelle Grenzhelligkeit hängt von vielen Faktoren ab wie Mondphase, Luftfeuchtigkeit, Wetterlage und natürlich Streulicht. Sie ist allgemein nicht vorhersagbar, aber Sie können sie leicht ermitteln:

Suchen Sie mit Hilfe der hellsten Sterne des Großen Bären (als Asterismus "Großer Wagen" genannt) und mit seiner Hilfe den Polarstern und den Kleinen Bären.


Auffinden des kleinen Bären mit Hilfe des Großen Wagens

Finden Sie anhand der folgenden Karten heraus, bis zu welcher scheinbaren Helligkeit Sie die Sterne noch sehen können (nach einer Idee des Vereins Kuffner-Sternwarte und der International Dark Sky Association IDA):


Bestimmung der Grenzhelligkeit mit Hilfe des Kleinen Bären

Welche Werte sind typisch?

  • Ein Wert von 3 ist typisch für eine große Stadt, aber auch dunstigen Himmel bei hellem Mondlicht.

  • Ein Wert von 4 ist typisch für das nähere Umland einer großen Stadt ohne Mondlicht oder auch für weiter entlegene Plätze bei hellem Mondlicht.

  • Ein Wert von 5 ist typisch für das weitere Umland einer großen Stadt bei mondlosem Himmel oder für sehr gute Plätze auch bei Mondlicht.

  • Ein Wert von 6 ist typisch für sehr dunkle Lagen ohne nennenswertes Streulicht, aber auch Lagen im entfernteren Umland großer Städte, wenn der Blick von der Richtung zur Stadt abgewandt ist.

Unter diesen Umständen ergeben sich für Österreich die folgenden zu erwartenden tatsächlichen stündlichen Meteorraten unter Annahme einer ZHR von 100. N(x) ist die zu erwartende stündliche Rate zur angegebenen Stunde bei einer Grenzhelligkeit von x.

  
UhrzeitHöhe RadiantN(3)N(3.5)N(4)N(4.5)N(5)N(5.5)N(6)N(6.5)
22:00 Uhr MESZ24.0°346812182741
23:00 Uhr MESZ29.0°3571015223348
00:00 Uhr MESZ35.0°4581218263957
01:00 Uhr MESZ41.3°4691420304466
02:00 Uhr MESZ48.6°57101523345175
03:00 Uhr MESZ56.4°58121726385683
04:00 Uhr MESZ64.3°68131928416190

Zu erwartende stündliche Meteorrate in Österreich für die Perseiden unter Annahme einer ZHR von 100.

Die Tabelle macht deutlich, wie sehr die tatsächlichen stündlichen Raten von der ZHR abweichen. Lassen Sie sich also von der Ankündigung eines "Sternschnuppenregens" nicht in die Irre leiten! Die Tabelle macht aber auch sehr deutlich, wie wichtig es ist, zur richtigen Zeit zu beobachten.

Meteorbeobachtung

Zur Beobachtung von Meteorschauern braucht man keine optischen Hilfsmittel; am besten geht es mit dem freien Auge. Am bequemsten ist die Beobachtung im Liegen. Wer wissenschaftlich interessante Daten liefern möchte, stellt eine Statistik auf: Anzahl und Helligkeit der Meteore in einer bestimmten Himmelsregion (da man nicht den ganzen Himmel auf einmal überblicken kann) pro Zeiteinheit.

Meteore sind meist nicht sehr hell; eine sehr gute Statistik hat Thomas Weiland im Jahr 2010 für die Perseiden ermittelt:


Helligkeitsverteilung der Perseiden im Jahr 2010

Demnach sind die meisten Meteore der Perseiden so schwach wie die schwächeren mit freiem Auge sichtbaren Sterne. Sehr helle Meteore oder gar Boliden sind die Seltenheit.

Aber auch "einfach nur Schauen" kann sehr schön sein. Das mit dem Wünschen ist eine andere Sache; wissenschaftlich betrachtet funktioniert da gar nichts. Aber da man den Wunsch ja nicht verraten darf, kann auch niemand überprüfen, ob's geklappt hat oder nicht ... und so lange man es nicht zu ernst nimmt, ist es ein netter Spaß, und Spaß hat bekanntlich noch niemandem geschadet.

© Wiener Arbeitsgemeinschaft für Astronomie. Jede Wiedergabe von Text oder Grafiken aus dieser Seite bedarf der vorherigen schriftlichen Erlaubnis und ist auch dann nur unter Angabe der Quelle (Autor und Organisation) gestattet.


Ein Beobachtungstipp der WAA
Wir möchten Sie ermuntern, dieses Himmelsereignis zu beobachten. Wenn Sie Anleitungen oder Hilfestellungen dazu benötigen, dann sind Sie bei unseren gemeinsamen Beobachtungen herzlich willkommen. Informationen (Ort, Termin, Treffpunkt und mehr) dazu finden Sie auf unserer Webseite und auf Facebook.

© Wiener Arbeitsgemeinschaft für Astronomie.  Impressum.